Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Commun Biol ; 5(1): 789, 2022 08 05.
Article in English | MEDLINE | ID: covidwho-2117221

ABSTRACT

As new variants of SARS-CoV-2 continue to emerge, it is important to assess the cross-neutralizing capabilities of antibodies naturally elicited during wild type SARS-CoV-2 infection. In the present study, we evaluate the activity of nine anti-SARS-CoV-2 monoclonal antibodies (mAbs), previously isolated from convalescent donors infected with the Wuhan-Hu-1 strain, against the SARS-CoV-2 variants of concern (VOC) Alpha, Beta, Gamma, Delta and Omicron. By testing an array of mutated spike receptor binding domain (RBD) proteins, cell-expressed spike proteins from VOCs, and neutralization of SARS-CoV-2 VOCs as pseudoviruses, or as the authentic viruses in culture, we show that mAbs directed against the ACE2 binding site (ACE2bs) are more sensitive to viral evolution compared to anti-RBD non-ACE2bs mAbs, two of which retain their potency against all VOCs tested. At the second part of our study, we reveal the neutralization mechanisms at high molecular resolution of two anti-SARS-CoV-2 neutralizing mAbs by structural characterization. We solve the structures of the Delta-neutralizing ACE2bs mAb TAU-2303 with the SARS-CoV-2 spike trimer and RBD at 4.5 Å and 2.42 Å resolutions, respectively, revealing a similar mode of binding to that between the RBD and ACE2. Furthermore, we provide five additional structures (at resolutions of 4.7 Å, 7.3 Å, 6.4 Å, 3.3 Å, and 6.1 Å) of a second antibody, TAU-2212, complexed with the SARS-CoV-2 spike trimer. TAU-2212 binds an exclusively quaternary epitope, and exhibits a unique, flexible mode of neutralization that involves transitioning between five different conformations, with both arms of the antibody recruited for cross linking intra- and inter-spike RBD subunits. Our study provides additional mechanistic understanding about how antibodies neutralize SARS-CoV-2 and its emerging variants and provides insights on the likelihood of reinfections.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal/chemistry , Antibodies, Viral , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus/chemistry
2.
Inflamm Res ; 71(10-11): 1327-1345, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1990592

ABSTRACT

BACKGROUND AND OBJECTIVE: Acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) was increasingly recognized as one of the most severe acute hyperimmune response of coronavirus disease 2019 (COVID-19). Clofazimine (CFZ) has attracted attention due to its anti-inflammatory property in immune diseases as well as infectious diseases. However, the role and potential molecular mechanism of CFZ in anti-inflammatory responses remain unclear. METHODS: We analyze the protein expression profiles of CFZ and LPS from Raw264.7 macrophages using quantitative proteomics. Next, the protective effect of CFZ on LPS-induced inflammatory model is assessed, and its underlying mechanism is validated by molecular biology analysis. RESULTS: LC-MS/MS-based shotgun proteomics analysis identified 4746 (LPS) and 4766 (CFZ) proteins with quantitative information. The key proteins and their critical signal transduction pathways including TLR4/NF-κB/HIF-1α signaling was highlighted, which was involved in multiple inflammatory processes. A further analysis of molecular biology revealed that CFZ could significantly inhibit the proliferation of Raw264.7 macrophages, decrease the levels of TNF-α and IL-1ß, alleviate lung histological changes and pulmonary edema, improve the survival rate, and down-regulate TLR4/NF-κB/HIF-1α signaling in LPS model. CONCLUSION: This study can provide significant insight into the proteomics-guided pharmacological mechanism study of CFZ and suggest potential therapeutic strategies for infectious disease.


Subject(s)
Acute Lung Injury , COVID-19 Drug Treatment , Respiratory Distress Syndrome , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Chromatography, Liquid , Clofazimine , Lipopolysaccharides/pharmacology , Lung/pathology , NF-kappa B/metabolism , Proteomics , Tandem Mass Spectrometry , Toll-Like Receptor 4/metabolism
3.
mBio ; 13(4): e0148522, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1950004

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of the global pandemic and life-threatening coronavirus disease 2019 (COVID-19). Although vaccines and therapeutic antibodies are available, their efficacy is continuously undermined by rapidly emerging SARS-CoV-2 variants. Here, we found that all-trans retinoic acid (ATRA), a vitamin A (retinol) derivative, showed potent antiviral activity against all SARS-CoV-2 variants in both human cell lines and human organoids of the lower respiratory tract. Mechanistically, ATRA directly binds in a deep hydrophobic pocket of the receptor binding domain (RBD) located on the top of the SARS-CoV-2 spike protein (S) trimer. The bound ATRA mediates strong interactions between the "down" RBDs and locks most of the S trimers in an RBD "all-down" and ACE2-inaccessible inhibitory conformation. In summary, our results reveal the pharmacological biotargets and structural mechanism of ATRA and other retinoids in SARS-CoV-2 infection and suggest that ATRA and its derivatives could be potential hit compounds against a broad spectrum of coronaviruses. IMPORTANCE Retinoids, a group of compounds including vitamin A and its active metabolite all-trans retinoic acid (ATRA), regulate serial physiological activity in multiple organ systems, such as cell growth, differentiation, and apoptosis. The ATRA analogues reported to date include more than 4,000 natural and synthetic molecules that are structurally and/or functionally related to ATRA. Here, we found that ATRA showed potent antiviral activity against all SARS-CoV-2 variants by directly binding in a deep hydrophobic pocket of the receptor binding domain (RBD) located on top of the SARS-CoV-2 spike protein (S) trimer. The bound ATRA mediates strong interactions between the "down" RBDs and locks most of the S trimers in an RBD "all-down" and ACE2-inaccessible inhibitory conformation, suggesting the pharmacological feasibility of using ATRA or its derivatives as a remedy for and prevention of COVID-19 disease.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism , Tretinoin/metabolism , Tretinoin/pharmacology , Vitamin A/metabolism , Vitamin A/pharmacology
4.
Viruses ; 12(11)2020 11 11.
Article in English | MEDLINE | ID: covidwho-918258

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 are enveloped, positive-sense, single-stranded RNA viruses and causes of epidemic diseases that have resulted in public health emergencies worldwide. Angiotensin-converting enzyme 2 (ACE2) is the receptor that allows the entry of these two viruses into host cells, a key step in the life cycle of the pathogens. The characterization of the interactions of ACE2 with the viral spike glycoproteins and structural studies of the ACE2-binding-induced conformational changes in the viral spike glycoproteins have furthered our understanding of the entry processes of these two viruses, and these studies provide useful information that will facilitate the development of antiviral agents and vaccines to control the diseases.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/physiology , Severe acute respiratory syndrome-related coronavirus/physiology , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization , Antibodies, Neutralizing/immunology , COVID-19/virology , Coronavirus Infections/virology , Humans , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/genetics
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.07.20051060

ABSTRACT

Background: The 2019 novel coronavirus (COVID-19) has continuous outbreaks around the world. Lung is the main organ that be involved. There is a lack of clinical data on the respiratory sounds of COVID-19 infected pneumonia, which includes invaluable information concerning physiology and pathology. The medical resources are insufficient, which are now mainly supplied for the severe patients. The development of a convenient and effective screening method for mild or asymptomatic suspicious patients is highly demanded. Methods: This is a retrospective case series study. 10 patients with positive results of nucleic acid were enrolled in this study. Lung auscultation was performed by the same physician on admission using a hand-held portable electronic stethoscope delivered in real time via Bluetooth. The recorded audio was exported, and was analyzed by six physicians. Each physician individually described the abnormal breathing sounds that he heard. The results were analyzed in combination with clinical data. Signal analysis was used to quantitatively describe the most common abnormal respiratory sounds. Results: All patients were found abnormal breath sounds at least by 3 physicians, and one patient by all physicians. Cackles, asymmetrical vocal resonance and indistinguishable murmurs are the most common abnormal breath sounds. One asymptomatic patient was found vocal resonance, and the result was correspondence with radiographic computed tomography. Signal analysis verified the credibility of the above abnormal breath sounds. Conclusions: This study describes respiratory sounds of patients with COVID-19, which fills up for the lack of clinical data and provides a simple screening method for suspected patients.


Subject(s)
COVID-19 , Dyspnea , Pneumonia
SELECTION OF CITATIONS
SEARCH DETAIL